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A Uniqueness Theorem for Ordinary Differential Equations,

Abstract. 'The uniqueness theorem of this paper answers an

open question for a system of differential equations arising in'/

a certain n-body problem of classical electrodynamics. The

essence of the result can be illustrated using the scalar proto-

type equation x' = gl(x) + g2 (t + x) with x(O) 0 0. The

solution of the latter will be unique provided g, and g2  are

0continuous positive functions of bounded variation.
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The theorem proved in this paper presents a criterion

weaker than a Lipschitz condition which assures uniqueness of

solutions of a system of ordinary differential equations. It

was designed to resolve an open question in classical electro-

dynamics described at the end of the paper.

Before stating the theorem let us illustrate it with two

scalar examples typifying the problems we had in mind. These

examples are easily treated with the theorem which follows.

We are unaware of any previous uniqueness theorem which would

handle them or the electrodynamics problem of Example 3.

Example 1. If g, and g2 are continuous positive

functions of bounded variation on an open interval containing

0, then the equation

x' = gl(x) + g2 (t + x) with x(0) = 0

has a unique solution on some open interval containing 0.

Example 2. The equation

xv = (t + x5/3)1/ 3  for t > 0 with x(0) = 0

has a unique solution.

The theorem itself treats a system of n ordinary

differential equations

(I) x' - f(t, x )A'R  Fa ,. .: C. .." .. " rC : C A €

with initial conditions TOC OF Di..j. jO , (AP*Cic

k" . . " " - rev iewed ad is
(2)..tFVbdt. I. " "'ese lAW AFR hO-I2 (7b).(2 ~ 0 )  O'D0istributioil is uniited. 1
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Let S be a subset (not necessarily open) of Rn +l,

and let f: S - Rn. Then, given (t., x0 ) 6 S, a solution of

Eqs. (1) and (2) is defined as any differentiable function

x on an interval J such that (t, x(t)) E S and

x' = f(t, x(t)) for t 6 J, while t0E. J and x(t0) = x0.

(If J contains either of its endpoints, x'(t) is a one-sided

derivative there.)

The norm used in this paper for a vector E Rn is
n=

Theorem. Let f: S - Rn be continuous and satisfy the

following condition. Each point in S has an open neighbor-

hood U, a constant K > 0, an integer m > 0, and functions

h and gj for j = 1, ... , m such that

m(3) 1tIf(t,&) - f(t,n)l I K]I IE- n t I + K Z I gj(h (tV))-gj(hj(t~n))l

J=l

on Uf% S, where hj: U + R is continuously differentiable

with
3h i(t,e) n 3h (t,

(4) at + i -*i fi(t&) 0 0 on U A S

and each gj: R * R is continuous and is of bounded variation

on bounded subintervals. Then Eqs. (1) and (2) with any point

(to, x 0 ) S have at most one solution on any interval J.

Remarks. The theorem of course does not guarantee the

existence of a solution on a nontrivial interval J. Existence

4 would follow, for example, if S were open.

To treat Example 1, define hi(t, ) - and h2 (t, v)

-t + C. For Example 2, let h(t, () - t + (5/3 and g(C) . (/3.



Proof of the Theorem. Suppose there were two different

solutions, x and y, on some interval J = [t0 , b) where

b > t . (The case J = (b, t0 ] is handled similarly.) Let

a H inf ft E (to , b) : x(t) # y(t)}.

Then x(a) = y(a).

For the poitt (a, x(a)) C S let U, K, m, hj, and gj be

as described in the hypotheses of the theorem. Without loss

of generality, assume that for each j the expression in (4)

is positive at (a, x(a)). Then, reducing U if necessary,

the continuity of the derivatives of h assures that there

exist positive constants p and M such that for j = 1, ... , m

ah (t, ) n 3h (tE)
(5) at - + Z fi(t,&) > p on U CS

and

(6) Ihj(tE) - hj(tn)I < MjjI - nil on U.

Choose a bounded interval [aj, 0] which contains h (UAIS),

reducing U if necessary. Then gj is the difference of two

continuous non-decreasing functions on [cj, OJ], and each of

the latter can be extended to a continuous non-decreasing

function on R by defining it to be constant on (--, atj] and

constant on O, --). Without loss of generality, we shall assume

that each gj is itself non-decreasing on R and that

(7) gj(hj(a, x(a))) = 0.

Define
(t

z(t) H a x,(s) - y,(s)I ds for a < t < b.
a

Then z(a) - 0, z'(a) - 0, z and z' are continuous,

z'(t) 0 0, and I1x(t) - y(t)II S z(t) on [a, b).
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Choose c C (a, b] sufficiently small so that (s, x(s))

and (s, y(s)) remain in U for a < s < c. Then, from (6),

hi(s, x(s)) - Mz(s) < hj(s, y(s)) < hi(s, x(s)) + Mz(s)

and, from (5),

da- hj(s , x(s)) > p

for a < s < c and J = 1, ... , m.

Thus for a < t < c, using (3) and the monotonicity of each g

z(t) < K ft Ix(s) - y(s)I + Z Igj(hj(sx(s))) -gj(hj(s,y(s)))l ds
a J=l

Kmt
< K(t -a)z(t) + E [gj(hj(sx(s)) + Mz(s))

- gj(h (s,x(s)) -Mz(s))] ds h (sx(s)) ds

Km hJ (t~x(t))+Mz(t)

-~ agjt + ( u) du
-K(t - a)z(t) + 1 h (t,x(t))-Mz(t)

Km (tEP- J f-it [9j(hj(s,x(s))+Mz(s)) +gj(hj(s,x(4))-Mz(s))]Mzt(s)ds.

Choose 6 > 0 such that for each j

Igj(u)I < P when lu - h (a,x(a))l < 616mKM V

Then choose 6 E (0,1/6K) such that a + 6 < c and, for each J,

1h3(t,x(t)) - hj(ax(a))i + Mz(t) < 6 when a < t < a + 6.

Now for a < t < a + 6 one finds z(t) < 5z(t)/6. This

contradiction completes the proof.

The motivation for this paper was the following problem

from classical electrodynamics.
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Example 3. Consider n electrically charged point

particles moving along the x-axis at distinct positions,

x1 (t), x2 (t), ... ,I Xn (t). Assume that the motion of particle

J depends only on the electromagnetic fields produced by

the other n-i particles, with these fields traveling to

particle j at the speed of light, c.

The required fields are calculated in terms of the

trajectories of the other particles from the retarded

Lienard-Wiechert potentials; and they are substituted into,

the Lorentz force law for particle J. Introducing vi = xf/c

for the velocity of particle i as a multiple of c, one

obtains a system of delay differential equations with state-

dependent delays:

(8) v K i- ij,,. + vi(t - rij)

(1 - v )3/2  ;J rJ - v(t - rip)

where each Kij is a constant, alj E sgn [x,(0) - xi(O)],

and where rij > 0 satisfies

v i (t ri)
(9) rt  for 1 a.

ij i- vi ( t - rij)

In these equations vi and rij without an argument stand

for vi(t) and rij(t).

In order to solve the system of n2  equations represented

by (8) and (9) when t > 0, one should know not only

vJ(0) and rj(0) for all J and all i # 3,

but also the values of vi(t) for t < 0, i - 1, ..., n.

Now consideration of the problem in three-dimensional

motion has led to the conclusion that accelerations should not
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be assumed continuous, but only integrable [2]. Thus it seems

reasonable even in the case of one-dimensional motion to assume

that the given past history of vi, say

(11) vi(t) = gi(t) for t 0 (i = 1, ... , n)

is merely absolutely continuous--not, in general, locally

Lipschitzian.

Substituting (11) into the right hand sides of Eqs. (8)

and (9) one gets a system of ordinary differential equations

which satisfies the uniqueness criterion of the present paper.

Thus a unique solution exists at least as long as each

t - r ijt) < 0 and each Ivj(t)l < 1. (Further extension

of the solution would use a "method-of-steps" argument which

is not relevant to this paper.)

The above uniqueness problem was solved earlier for the

case of two particles in one-dimensional motion [1]. But the

method used did not seem to extend to the n-body problem.
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